
"Coverage" here refers to the measure of how much of the source 
code of the Golang compiler is exercised by the given testcases.

We designed a series of filtering criteria to remove low-quality programs:

Remove files with syntax errors.
Remove files with a character length exceeding 10000.
Remove files with duplicate code[3].
Remove files with an alphanumeric characters ratio below 0.25.
Remove files that may contain undefined behavior.
Remove files that reference the “internal” package.

Data Filtering

Model Training and 
Finetuning

In our experiment, we 
finetuned the CodeT5[2] 

through 30 epochs, at the 
learning rate of 10−5 and 
warmup steps of 1000. Then 
we implemented our method on 
the Golang compiler, looping 
1000 times to generate 1157 
testcases (cost about 100h).

Motivation

Limited coverage and quantity of testcases generated by traditional testing 
method.
Undefined behavior and syntax errors[1] in generated testcases.

Objective
A LLM-based high-quality code generation method.

 Step1: Remove undefined 
behaviors and syntax errors 
from the dataset;

 Step2: Finetune a pre-trained 
model by the processed dataset;

 Step3: Generate testcases with 
a loop using coverage-based 
seed schedule.

Workflow of our method:

Performance

We employed the method on the Golang compiler, producing 
testcases that achieved an average coverage of 3.38%, compared to 
testcases with 0.44% average coverage generated by Go Fuzzing[4]. 
Among these testcases, only 2.79% exhibited syntax errors, and 
none manifested undefined behavior.

Our Web: https://github.com/GuQiuhan/LLM-Based-Code-
Generation-Method-for_x0002_Golang-Compiler-Testing.
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Future Work

Correct model bias with attention mechanisms.

Optimize the seed schedule.

Good Performance

High Coverage

Large Quantity

Conclusion

Coverage-based Seed Schedule


