
"Coverage" here refers to the measure of how much of the source 
code of the Golang compiler is exercised by the given testcases.

We designed a series of filtering criteria to remove low-quality programs:

Remove files with syntax errors.
Remove files with a character length exceeding 10000.
Remove files with duplicate code[3].
Remove files with an alphanumeric characters ratio below 0.25.
Remove files that may contain undefined behavior.
Remove files that reference the “internal” package.

Data Filtering

Model Training and 
Finetuning

In our experiment, we 
finetuned the CodeT5[2] 

through 30 epochs, at the 
learning rate of 10−5 and 
warmup steps of 1000. Then 
we implemented our method on 
the Golang compiler, looping 
1000 times to generate 1157 
testcases (cost about 100h).

Motivation

Limited coverage and quantity of testcases generated by traditional testing 
method.
Undefined behavior and syntax errors[1] in generated testcases.

Objective
A LLM-based high-quality code generation method.

 Step1: Remove undefined 
behaviors and syntax errors 
from the dataset;

 Step2: Finetune a pre-trained 
model by the processed dataset;

 Step3: Generate testcases with 
a loop using coverage-based 
seed schedule.

Workflow of our method:

Performance

We employed the method on the Golang compiler, producing 
testcases that achieved an average coverage of 3.38%, compared to 
testcases with 0.44% average coverage generated by Go Fuzzing[4]. 
Among these testcases, only 2.79% exhibited syntax errors, and 
none manifested undefined behavior.

Our Web: https://github.com/GuQiuhan/LLM-Based-Code-
Generation-Method-for_x0002_Golang-Compiler-Testing.

LLM-Based Code Generation Method for Golang Compiler Testing
Qiuhan Gu

State Key Laboratory for Novel Software Technology, Nanjing University, China
qiuhan.gu@smail.nju.edu.cn

Advisor: Yu Wang

Reference
[1]  2023. Go. https://go.dev/ref/spec.
[2] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5: Identifier-aware Unified Pre-trained Encoder-
Decoder Models for Code Understanding and Generation. arXiv preprint arXiv:2109.00859 (2021).
[3] Miltiadis Allamanis. 2019. The Adverse Effects of Code Duplication in Machine Learning Models of Code. 
arXiv:1812.06469 [cs.SE]
[4] 2023. GoFuzzUrl. https://github.com/dvyukov/go-fuzz.

Future Work

Correct model bias with attention mechanisms.

Optimize the seed schedule.

Good Performance

High Coverage

Large Quantity

Conclusion

Coverage-based Seed Schedule


