
"Coverage" here refers to the measure of how much of the source
code of the Golang compiler is exercised by the given testcases.

We designed a series of filtering criteria to remove low-quality programs:

Remove files with syntax errors.
Remove files with a character length exceeding 10000.
Remove files with duplicate code[3].
Remove files with an alphanumeric characters ratio below 0.25.
Remove files that may contain undefined behavior.
Remove files that reference the “internal” package.

Data Filtering

Model Training and
Finetuning

In our experiment, we
finetuned the CodeT5[2]

through 30 epochs, at the
learning rate of 10−5 and
warmup steps of 1000. Then
we implemented our method on
the Golang compiler, looping
1000 times to generate 1157
testcases (cost about 100h).

Motivation

Limited coverage and quantity of testcases generated by traditional testing
method.
Undefined behavior and syntax errors[1] in generated testcases.

Objective
A LLM-based high-quality code generation method.

 Step1: Remove undefined
behaviors and syntax errors
from the dataset;

 Step2: Finetune a pre-trained
model by the processed dataset;

 Step3: Generate testcases with
a loop using coverage-based
seed schedule.

Workflow of our method:

Performance

We employed the method on the Golang compiler, producing
testcases that achieved an average coverage of 3.38%, compared to
testcases with 0.44% average coverage generated by Go Fuzzing[4].
Among these testcases, only 2.79% exhibited syntax errors, and
none manifested undefined behavior.

Our Web: https://github.com/GuQiuhan/LLM-Based-Code-
Generation-Method-for_x0002_Golang-Compiler-Testing.

LLM-Based Code Generation Method for Golang Compiler Testing
Qiuhan Gu

State Key Laboratory for Novel Software Technology, Nanjing University, China
qiuhan.gu@smail.nju.edu.cn

Advisor: Yu Wang

Reference
[1] 2023. Go. https://go.dev/ref/spec.
[2] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5: Identifier-aware Unified Pre-trained Encoder-
Decoder Models for Code Understanding and Generation. arXiv preprint arXiv:2109.00859 (2021).
[3] Miltiadis Allamanis. 2019. The Adverse Effects of Code Duplication in Machine Learning Models of Code.
arXiv:1812.06469 [cs.SE]
[4] 2023. GoFuzzUrl. https://github.com/dvyukov/go-fuzz.

Future Work

Correct model bias with attention mechanisms.

Optimize the seed schedule.

Good Performance

High Coverage

Large Quantity

Conclusion

Coverage-based Seed Schedule

