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» Limited coverage and quantity of testcases generated by traditional testing

method.

» Undefined behavior and syntax errors!!! in generated testcases.

Objective

A LLM-based high-quality code generation method.

We designed a series of filtering criteria to remove low-quality programs:

» Remove files with syntax errors.

» Remove files with a character length exceeding 10000.

» Remove files with duplicate codel3].

» Remove files with an alphanumeric characters ratio below 0.25.
» Remove files that may contain undefined behavior.

‘internal” package.

» Remove files that reference the ¢

In our experiment, we
finetuned the CodeT5[2]
through 30 epochs, at the
learning rate of 10—5 and
warmup steps of 1000. Then
we implemented our method on
the Golang compiler, looping
1000 times to generate 1157
testcases (cost about 100h).
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on coverage.
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"Coverage" here refers to the measure of how much of the source
code of the Golang compiler is exercised by the given testcases.
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Step 1. Data Filtering

Workflow of our method:

» Stepl: Remove undefined
behaviors and syntax errors
from the dataset;

! Step 3. Testcase Generation
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» Step2: Finetune a pre-trained
model by the processed dataset;

We employed the method on the Golang compiler, producing
testcases that achieved an average coverage of 3.38%, compared to

High Coverage testcases with 0.44% average coverage generated by Go Fuzzing!“l.

Among these testcases, only 2.79% exhibited syntax errors, and

Large Quantity none manifested undefined behavior.

Our Web: https://github.com/GuQiuhan/LLM-Based-Code-
Generation-Method-for x0002 Golang-Compiler-Testing.

» Correct model bias with attention mechanisms.

» Optimize the seed schedule.
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