L
i~
7w

SE

Nanjing University

00 Nl € aneration Ve N T g N C N C
Qiuhan Gu
State Key Laboratory for Novel Software Technology, Nanjing University, China Association for
G qivhan.gu@smail.nju.edu.cn Computing Machinery

» Limited coverage and quantity of testcases generated by traditional testing

method.

» Undefined behavior and syntax errors!!! in generated testcases.

Objective

A LLM-based high-quality code generation method.

We designed a series of filtering criteria to remove low-quality programs:

» Remove files with syntax errors.

» Remove files with a character length exceeding 10000.

» Remove files with duplicate codel3].

» Remove files with an alphanumeric characters ratio below 0.25.
» Remove files that may contain undefined behavior.

‘internal” package.

» Remove files that reference the ¢

In our experiment, we
finetuned the CodeT5[2]
through 30 epochs, at the
learning rate of 10—5 and
warmup steps of 1000. Then
we implemented our method on
the Golang compiler, looping
1000 times to generate 1157
testcases (cost about 100h).

1 I. Use gotests to calculate the coverage of
:C High Sorted Testcase List each initial testcase for the Golang compiler
overage
a and sort them based on coverage.

l — 1I. Select the
L testcase with the
I 1 highest coverage

________________ as the seed,
Low randomly remove

1

1

1
| I
| I
] 1
] ]
: 1
| 1
: 1
1 1
| Coverage - a function body :
] from it as the [
1 i !
i1 III. Add the new Input @ s '
1 1
: I
| I
1 I
] ]
] 1

testcases to the
original queue and
resort them based
on coverage.

IV. Repeat I-11T
until the coverage
1 <= Model [l e ches a stable

state.

"Coverage" here refers to the measure of how much of the source
code of the Golang compiler is exercised by the given testcases.

Advisor: Yu Wang

Good Performance

1
Original Go Language
Code =} Processed Dataset
= i

Step 1. Data Filtering

Workflow of our method:

» Stepl: Remove undefined
behaviors and syntax errors
from the dataset;

! Step 3. Testcase Generation

-l' |
a L‘_l
Go Code Generation Model P—

1

1

1

1

1

: Input ﬁ &Output
| > Step3: Generate testcases with
"I Coverage-based > o4 Step 2. Model .
' Useed scheauie ] < |4 /g Training and Fnetune a loop using coverage-based

e Ryl Syl ' seed schedule.

» Step2: Finetune a pre-trained
model by the processed dataset;

We employed the method on the Golang compiler, producing
testcases that achieved an average coverage of 3.38%, compared to

High Coverage testcases with 0.44% average coverage generated by Go Fuzzing!“l.

Among these testcases, only 2.79% exhibited syntax errors, and

Large Quantity none manifested undefined behavior.

Our Web: https://github.com/GuQiuhan/LLM-Based-Code-
Generation-Method-for x0002 Golang-Compiler-Testing.

» Correct model bias with attention mechanisms.

» Optimize the seed schedule.

[1] 2023. Go. https://go.dev/ref/spec.

[2] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5: Identifier-aware Unified Pre-trained Encoder-
Decoder Models for Code Understanding and Generation. arXiv preprint arXiv:2109.00859 (2021).

[3] Miltiadis Allamanis. 2019. The Adverse Effects of Code Duplication in Machine Learning Models of Code.
arXiv:1812.06469 [cs.SE]

[4] 2023. GoFuzzUrl. https://github.com/dvyukov/go-fuzz.



